Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(8)2022 08 19.
Article in English | MEDLINE | ID: covidwho-2024294

ABSTRACT

Viruses can evolve to respond to immune pressures conferred by specific antibodies generated after vaccination and/or infection. In this study, an in vitro system was developed to investigate the impact of serum-neutralising antibodies upon the evolution of a foot-and-mouth disease virus (FMDV) isolate. The presence of sub-neutralising dilutions of specific antisera delayed the onset of virus-induced cytopathic effect (CPE) by up to 44 h compared to the untreated control cultures. Continued virus passage with sub-neutralising dilutions of these sera resulted in a decrease in time to complete CPE, suggesting that FMDV in these cultures adapted to escape immune pressure. These phenotypic changes were associated with three separate consensus-level non-synonymous mutations that accrued in the viral RNA-encoding amino acids at positions VP266, VP280 and VP1155, corresponding to known epitope sites. High-throughput sequencing also identified further nucleotide substitutions within the regions encoding the leader (Lpro), VP4, VP2 and VP3 proteins. While association of the later mutations with the adaptation to immune pressure must be further verified, these results highlight the multiple routes by which FMDV populations can escape neutralising antibodies and support the application of a simple in vitro approach to assess the impact of the humoral immune system on the evolution of FMDV and potentially other viruses.


Subject(s)
Foot-and-Mouth Disease Virus , Animals , Antibodies, Neutralizing , Antibodies, Viral , Capsid Proteins/genetics , Epitopes/genetics
SELECTION OF CITATIONS
SEARCH DETAIL